If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+84x+441=0
a = 2; b = 84; c = +441;
Δ = b2-4ac
Δ = 842-4·2·441
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-42\sqrt{2}}{2*2}=\frac{-84-42\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+42\sqrt{2}}{2*2}=\frac{-84+42\sqrt{2}}{4} $
| (10-27/x)1.1×=200 | | 62+x=x+122 | | -24=2w+2(w+2) | | 3(x-12)=x+6 | | 3(x-12)=x-6 | | 13-9=19-6+x | | -12=4(y-2)-2y | | -14=2(u+8)+8u | | x/3+12=x | | -x+268=84 | | 195=-w+136 | | 1-2(3-2x)=1-2(x-3) | | 219-v=67 | | 219-v=66 | | -x+185=22 | | 12t+42=10t-2t-14 | | 8x-8=2x+12 | | 2/3z=9+3/4z= | | -(2x+2)-(-1+2x)+4x=-1 | | 4x(3x+2)(3x-4)=0 | | 2x=1/2x+30 | | -2t^2+8t=0 | | 2t¨2+8t=0 | | 11x-20=2-8-x | | 9x^2-34x-55=0 | | 6/5x=180 | | 2x-5(x+3)=9 | | 4/n=12/5 | | F(x)=-2x2+x-15 | | v=4/3*3.14*125 | | x=-3x^2-3 | | 3-x-x²=(-x²-8)-3 |